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Introduction 

 The Penn State Robotics Club's 2010 entry into the IGVC is an autonomous robot 

affectionately named “Al.”  During the first two years of the competition which the team had 

competed, the team utilized pre-built platforms, either acquired commercially or secondhand 

from previous club competitions.  This year the platform was designed and built by an 

interdisciplinary team of engineering students specifically for the IGVC competition.    The 

challenges faced during the past two years helped the team formulate new strategies for 

avoiding, minimizing and quickly addressing problems which affect the robots performance, 

often occurring in basic and previously reliable systems.   

 

 This year Al is smaller, lighter, and more compact.  The software team decided to re-

utilize and significantly improve the Player interface algorithms developed to integrate 

communication with the sensor network and control systems.  

 

 This year's robot also contains a number of significant innovations.  One notable feature 

is the student designed single-voltage power bus, which includes modular sensor nodes that 

regulate power as needed by the node.  Sensor communication architecture is now 

standardized, utilizing an Ethernet bus for sensor communication.  Fault tolerance and 

detection has also been designed to ensure more reliable sensor communications.  These are 

only a few notable improvements representative of numerous others.   

 

Platform Design Process 

 The design process for 2010 was much more involved and directed than in previous 

years.  To ensure an efficient development cycle, scientific methods were used to define the 

characteristics of the robot and these equations created parameters that were used to acquire 

and operate the physical components of the robotic platform.  Prodigious amounts of time 

were spent analyzing previous failures and developing new and innovative solutions.   



 

 The IGVC team is split into three logical sections: Platform, Sensing, and AI respectively 

held responsible for each of the different aspects of the robot's design.  Table 1, below, outlines 

the team members which contributed to the 2010 entry, which aspects of development they 

were most involved in, and how many hours each spent on the project. 

 

Name: Team/Role: Hours Spent: 

Rich Mattes Team Leader/Sensing Lead/AI 100 

Anthony Cascone Platform Lead/AI 100 

Robin Pritz Platform 40 

Tony Jones Platform 40 

Xibei Ding Platform/Sensing 80 

Miles Frain Platform 40 

Jeremy Bridon AI 40 

Shawn Moffit Sensing/Documentation 20 

 

 

Design Parameters 

 The 2009 IGVC entry was a Segway RMP400, borrowed from Penn State's Networked 

Robotics and Systems Laboratory.  The decision to borrow this robot was based on time 

constraints.  With a whole software stack to write, it was not feasible to, given the team’s 

experience and manpower to compete that year and create a new robot frame from scratch.   

 Building on some criticisms of the 2009 entry (far too large, unable to be commercialized in its 

current state,) and leveraging two years of experience of best practices for the IGVC 

competition, the initial process began with laying out a set of quantitative performance goals 

and requirements which are listed below.  

 

 150lb maximum weight 

 8-10mph overall top speed 

 Two motors on drive wheels, trailing caster 

 Climb 40 degree inclines 

Table 1: Team time chart. 



 3+ hour battery runtime 

 Small size, as close to 3' x 2' as possible 

 Support sustained sensor draw of 20W 

 Zero radius turn ability 

 12" diameter wheels 

 1m stopping distance 

 Hot-swappable batteries 

     

 From these requirements, design parameters were identified which would meet the 

desired performance characteristics as indicated in the list below: 

 

 Motor Size (Torque, Power, Angular Velocity) 

 Minimum Battery Capacity (Ah) 

 Battery Chemistry (Lead Acid, Lithium-Polymer, etc) 

 Ground Clearance 

 CG Location 

 Track width (distance between drive wheels) 

 Wheelbase/Caster location 

 Tire type/material 

     

 This list of design parameters was utilized to generate mathematical relationships 

between the performance goals and parameters.  The performance requirement of "3 hours of 

battery run time" is dependent on battery chemistry, type of battery, and average power draw 

(of sensors and motors), all interdependent relationships.     Maintaining a low center of gravity, 

for example, requires locating the weight as low to the ground as possible.  Choosing four lead-

acid batteries for the "3 hours of battery run time" influences frame design, in addition to the 

wheel and motor constraints needing to be close to the ground, this conflicts with the 

dimension related goal of a 3’x2’ frame size requirement.    Choosing four heavy lead acid 



batteries pushes the 150lb maximum weight performance goal.  These dependencies require 

careful planning and design.   

 

Motor selection 

 With the above interdependence problems in mind, motor selection was the team’s 

initial focus.  Torque and power parameters, run time, incline climbing goals, and maximum 

angular velocity for top speed goal achievement is calculated as follows. 

  

 For straight-line travel power requirements, the power requirements are 

 

This formula derives from the instantaneous power formula, where P = F x v.  This is a force 

balance under constant velocity, which means the force the motors must exert has to be the 

same as the force pulling the robot back due to rolling friction (Crr * Fn). Each motor only needs 

to provide half of this force, hence the division by two.  The Crr for grass was determined to be 

approximately 0.055 to 0.065. 

 

 For maximum incline angle, building on the above force balance, in addition to the force 

of weight of the robot opposing motion up an incline, the following formula gives how much 

power needed to climb up an incline. 

 

 Torque requirements for the motor in both situations can be derived from the T=r x F 

formula, where r is the outer radius of the tires we've chosen, and F is the force the motors 

each need to overcome to move the robot.  From a dead stop, the force is the static rolling 

resistance, and in the incline case, the force is the rolling resistance plus the weight of the robot 

opposing motion due to gravity.   

 

 Finally, the biggest constraint on vehicle top speed is the motor's maximum RPM.  

Finding the speed of the robot is fairly trivial using the motor RPM and tire diameter.  For a 12“ 



tire diameter, a maximum RPM of at least 140 was needed for 5mph travel.  This value gives  

the final requirement for the motor. A list of motors consisting of their rated torque, power, 

and maximum RPM based on the manufacturer spec sheets was created in order to find which 

motors were able to satisfy all of the requirements and to compare costs.  Given budget 

constraints and availability of the NPC T74 motors from inventory – the decision was clear.    

These motors are much more powerful than required, so the budget constraint forced us to 

design around this core component.   

 

Battery selection 

 In order to meet runtime requirements, the selected batteries must be able to provide 

enough power to drive the motors and sensors for the amount of time specified.  Sensor 

datasheets provided power draw, which was modeled as a constant during robot operation. A 

power profile was generated for the motors using the above power requirements.   It was 

estimated that the robot would spend 50% of its time in straight line travel, 50% of its time 

climbing inclines at an average of 10 degrees, and 10% of its time sitting idle while being 

programmed, troubleshot, and for debugging problems.  With this power profile, the average 

estimated power draw can be applied to battery capacity as indicated by the following formula: 

 

which is used to determine the runtime as a function of current draw and energy available from 

the batteries.  Rearranging the formula, to solve for battery capacity in amp-hours (C) as a 

function of runtime (t)., the average current, (I), is determined by using P = IV on the power 

profile’s power draw, at a voltage of 24V.  



 

Using the above power profile percentages, an average power draw of 227.38 watts was 

calculated.  Conclusion: in order to run for 3 hours, the robot has to have a battery pack 

capacity of 42 amp-hours. 

 

Power Distribution System Design 

 The power distribution system should be simple, modular, and robust.  Batteries should 

be hot swappable to minimize 

downtime, and one power source 

should supply the components.  

Last year's robot had separate 

power supplies for the drive 

systems and the sensors, which 

created requirements for two 

different kinds of chargers.  The 

robot should also be able to charge 

Figure 3: Distribution hub, on-board charger, motor controller, and motor 
with encoder 

Figure 2: Power Distribution Layout 



without having to disconnect power to the sensors. 

 

 Given the run time requirements listed above, budget and inventory, it was decided that 

a full 24V DC power system using two packs of two 12V lead acid batteries would be created.  

Each battery pack is outfitted with a high-current quick-disconnect connector, and both packs 

are connected in parallel to a distribution hub.  This layout allows each battery pack to be 

removed and replaced individually, while the other battery pack remains connected to power 

the robot.  The central distribution hub allows all major components to tap into the raw 24V DC 

power bus at a single central point.  An on-board 24V DC charger provides current to this 

central distribution hub, allowing the vehicle to charge without turning off any subsystems. 

 

 Each battery is rated at 18 amp-hours, which means that four batteries have a combined 

capacity of 36 amp-hours in their current configuration.  Based on power draw calculations, the 

pack should last 2.5 hours before it needs to be charged. 

 

Low-level Control 

 Past years have shown 

that relying solely on laptops 

for control of the robot is a 

bad design paradigm, as 

laptops take significant time 

to boot up and configure.  

This means that the robot 

often not ready to move, and 

sometimes will take up to 5 

minutes to enter that state.  

In the past the work for this 

was R/C car equipment that 

operated independently of the software controls, however this approach often required 

Figure 4: Testing the Central Distribution Box 



manual intervention to switch between operating states.  Given the goals of fast cold-start 

time, and minimal manual intervention, an embedded ARM based computer, the BeagleBoard 

was chosen.  This board runs a full-fledged Linux-based operating system, which enables the 

software team to compile and run software on it with minimal effort.  The BeagleBoard also 

features a fast boot-up time.  The BeagleBoard was used to control the Motor Controller 

directly, which means that the Motor Controller is available on the network as soon as the 

BeagleBoard has completed its boot-up sequence.  This significantly reduces time constraints 

that made previous platforms non-competitive and was a significant innovation.   

 

 Another innovation for this year is finely tuned sensor power control.  Since a dedicated 

computer comes online at power-up, this could be used to control the entire robot platform 

startup procedure. The BeagleBoard is tied to a relay board, which can individually switch 

power off and on to each sensor node.  This allows the BeagleBoard to power on and off all of 

the sensors on the robot through software.  This functionality saves power, automates robot 

startup, and is also used to quickly recover from communication faults. 

 

Emergency Stop Architecture 

 Emergency stop is a crucial part of the robot architecture.  This functionality has three 

modes of actuation.  First and foremost, a large pushbutton mounted on the chassis of the 

robot instantly turns off the motor controller, removing all power from the motors.  The second 

line of defense is remotely-controlled relay, satisfying the remote-stop requirement of the 

rules.   Finally, a software controlled relay is present, to allow the motor controller to be 

disabled by the controlling algorithm for safety (for instance, when the vehicle is charging.)  The 

motor controller's stopped state is also monitored externally by the BeagleBoard, to assist in 

fault tolerance.  If the BeagleBoard loses communication with the motor controller, but finds 

that the motor controller has been disabled externally (by a remote or physical stop switch,) 

the BeagleBoard will not attempt to re-establish communication until the motor controller is 

able to power on again. 



Sensing Design process 

Design Parameters 

 The team had much of its sensing equipment available from the past two years of 

competition.  While software was utilized to communicate with the sensors, bringing sensors 

online and offline often took several configuration steps.  Further, it seemed that each sensor 

had a specific connector to support, be it RS/232 DB-9, 3.3v or 5v TTL serial, or Ethernet.  Each 

sensor also had its own power requirements, which meant facilities were needed to regulate 

and distribute power at 3.3V, 5V, 12V, and 24V DC.  It was also difficult to track down 

communication faults, as the team rarely knew if it a bug was power issue, loose solder joint in 

a DB9 connector, or an outright sensor failure. 

 

Software Architecture 

 Building on these deficiencies, a modular sensor node architecture was decided upon.  It 

was mandated that, wherever possible, each sensor node must communicate over Ethernet, 

and that all sensor nodes shall accept a 24V DC power source, and regulate down to the 

sensor's required voltage as necessary.  This 24V DC and Ethernet interface will be contained in 

a 10 pin locking aerospace connector, such that the same style of cable may be used to plug in 

to any sensor installed 

onboard.  This 

architecture allows 

any computer on the 

network to initiate and 

host communications 

to a sensor, providing 

us with the ability to 

perform load-

balancing between Figure 5: Sensor node with example Ethernet/Power cable 



each of the computers at will.  It also allows the team to centrally regulate and distribute only 

one voltage, simplifying routing of power and signal wires to all of the different sensors. 

 

 Each sensor has an accompanying driver to manage connection and communication.  To 

date, drivers would fail outright and crash if communication to any particular sensor was 

unavailable or interrupted.  This wreaked havoc with software algorithms, which had no way of 

knowing when a sensor dropout took place.  More often than not, once one of the sensor 

threads stopped working, it would cause a chain reaction that would crash the rest of the 

system.  To alleviate this, fault tolerance was added to all of the software drivers.  A driver 

model was established which dictated that drivers must periodically check to verify the 

connection to the sensor is active.  If the connection is found to be inactive, the driver will go 

into a fault mode, where it will continuously check and try to re-establish a connection with the 

sensor.  While in fault mode, the driver will publish a flag to all of its subscribers, notifying them 

that this sensor is down and readings from the sensor are not to be trusted.  Drivers will also 

continue to broadcast the last known good information.  Once connection to the sensor is re-

established, the driver will clear the fault flag and begin publishing current information. 

 

 All of the sensor Ethernet/power cables are plugged in to the central distribution box.  

This box provides a regulated 24V DC source from the batteries, which can be activated and 

deactivated by a relay.  The relays are controlled by an Arduino microcontroller, which 

responds to commands from a BeagleBoard over USB.  Since the power to each sensor can be 

Part Maunfacturer/Model# 

IMU Sparkfun 6DOFv4 

LIDAR SICK LMS291 

GPS Hemisphere A100 Smart Antenna 

Camera Point Grey Dragonfly 

Compass OceanServer OS5000 

Motor NPC T74 

Motor Controller Roboteq AX2850 

Wheel Encoders USDigital E6 

Table 2: Discrete component list 



modulated in software as mentioned in the Low-Level Control section, a driver that detects a 

fault in sensor communication has the option to power-cycle the sensor while attempting to re-

establish communication. 

 

Software and Controls design process 

 The software and control framework once again uses the open-source Player 

framework, running on top of the Fedora and Angstrom Linux distributions.  The open nature of 

these development tools and frameworks allows for great customization and control during the 

development process.  It also allows the team to track down and fix bugs within the software 

frameworks quickly, and communicate with the upstream developers for fast resolution of 

problems that are outside team expertise.  In the spirit of free and open software, this year's 

IGVC team played a large role in packaging and submitting the Player robot server, the Stage 

robot simulator, and the Gearbox serial/Ethernet communication library for inclusion in 

Fedora's package database.  Now, all users of Fedora can install any of these software packages 

with a few mouse clicks, no complex compilation steps necessary. 

 

Design Parameters 

  For this year's IGVC robot, the team wanted to build on the failings of last year's 

software design to create a system that's more tolerant to intermittent faults, and more user-

friendly.  To that end, a separate interface was created in each device driver that notifies any 

subscribing algorithms of a fault.   

Map Generator 

 

 Map generation code collects the robot's current pose and all laser scans made by the 

robot.  It updates an occupancy grid (represented with an image file) with laser range 

measurements, drawing obstacles where laser collisions are detected.  When updating an area 

that already exists within the map, obstacles that already exist in the map are made to fade 



away slowly.  This accounts for drift errors, where the current position estimate is different 

from the position estimate when the map was first updated.  The end result is that, if nothing is 

detected where an obstacle previously was, the recorded obstacle will eventually disappear.  

However, if new scans do agree with a previously found obstacle, the obstacle is treated 

normally. 

 

Path Planner 

 Planning a path over mostly unknown terrain is not a very easy task.  The path planner 

needed to work well with partially unknown environments, and it had to be fast to re-plan if the 

known obstacles suddenly change.  For these reasons, the D* planning algorithm was chosen.  

Periodically, the path planner will request an area of map from the Map Generator, based on 

the robot's current position and goal pose.  Once the Map Generator satisfies this request, a 

new array of goal points is calculated and made available to any clients that request them. 

 

 The Path Planner will try to come as close to any obstacles as possible thus shortening 

the distance to travel; however, this sometimes creates issues as it tries to plan through the 

pixels immediately surrounding known obstacles from the Map Generator. In order to avoid 

this, obstacles are dilated by the width of the robot, thereby adding a buffer, when they are 

transferred from the Map Generator to the Path Planner.   

 

Figure 6: Simulated environment Figure 7: Map Generator output from simulated environment 



Image Processing 

 Image processing is traditionally a 

very difficult problem.  The solution 

chosen, however, is quite simple.  A color 

image is acquired from the camera, and 

each channel is instantly down sampled 

to 1 bit per pixel.  The resulting image 

allows for only 8 pixel states.  The image 

is then converted to grayscale, making an 

intensity image where the highlights 

consist of bright objects from the original 

image.  At this stage, the desired 

obstacles stand out, but there is also a lot 

of small random noise.  A median filter is run across the image, with a sampling area of 5x5 

pixels, to eliminate outliers throughout the image, and then the image is thresholded so all 

pixels below white are turned black.  All that remains at this point is a binary image with line 

markers in white, and background in black.  The image is subjected to a perspective 

transformation, which converts the image such that it looks like a bird's eye view of the area in 

front of the robot.  Lines are traced from the bottom center of the image, radially to the edges 

of the image, creating a virtual laser scan of the image.  This laser scan is then treated by the 

algorithms as any other laser scan would, with laser hits representing real obstacles. 

 

Localization 

 Localization of the robot takes place with several different sensors.  Inputs from a 6 

degree of freedom accelerometer and gyro, WAAS-enabled GPS receiver, magnetic compass, 

and wheel encoders mounted in the motors are fed into a Kalman Filter to keep an accurate 

estimate of the robot's position.  The localization routine is fault tolerant: when a sensor raises 

a fault flag, the Kalman Filter will assign zero confidence to the incoming measurements, 

effectively blocking them out.  The state will continue to update with the rest of the available 

Figure 6: Image processing algorithm sequence 



measurements, and when a faulty sensor comes back online, its measurements will start to be 

considered again. 

Operational States 

Navigation Challenge 

 The Navigation Challenge relies heavily on most of the algorithms.  The provided set of 

waypoint GPS coordinates is loaded from a text file by the controller algorithm, and converted 

to the robot's internal coordinate system.  The Map Generator starts and begins recording the 

map, and the Path Planner starts and awaits a command.  Once the controller algorithm is 

ready, it will send the point of the first waypoint to the Path Planner.  The Path Planner will 

request the necessary map tiles from the Map Generator, plan its path, and publish that data 

back to the main controller algorithm.  The controller algorithm will then compare the points 

along the path with the vehicle’s current estimated position (from the Localization algorithm 

described above), and using a proportional controller, attempt to navigate to the intermediate 

points in sequence until the final goal point is reached.  Along the way, new waypoints are 

periodically requested, and if the planner decides to alter its route due to new obstacles, the 

controller algorithm will adjust accordingly. 

 

Autonomous Challenge 

 The strategy for the Autonomous challenge is to take a reactive approach, which means 

that accurate sensor data is of great importance.  The robot is set to try to maintain a nominal 

straight-forward velocity, until an obstacle is detected.  Obstacle detection takes place using 

two lasers:  the front-mounted SICK scanning laser rangefinder and the virtual laser provided by 

the Image Processing algorithm developed.  The physical laser handles detections of barrels, 

trash cans, and fences, while the virtual laser detects white lines and represents them as 

obstacles.  As the robot encounters obstacles on either side, it alters its path in an effort to 

avoid collisions. 


