
Al

Penn State Robotics Club

Faculty Advisor Statement
I, Sean N. Brennan, certify that the design and development of Al has been significant, and that each

student performing this work is a registered student. This work as part of a graduate class project and

as an extracurricular project represents a participation level equivalent to what would be awarded credit

as a senior design project.

Sean N. Brennan, Department of Mechanical Engineering, The Pennsylvania State University

Introduction

 The Penn State Robotics Club's 2010 entry into the IGVC is an autonomous robot

affectionately named “Al.” During the first two years of the competition which the team had

competed, the team utilized pre-built platforms, either acquired commercially or secondhand

from previous club competitions. This year the platform was designed and built by an

interdisciplinary team of engineering students specifically for the IGVC competition. The

challenges faced during the past two years helped the team formulate new strategies for

avoiding, minimizing and quickly addressing problems which affect the robots performance,

often occurring in basic and previously reliable systems.

 This year Al is smaller, lighter, and more compact. The software team decided to re-

utilize and significantly improve the Player interface algorithms developed to integrate

communication with the sensor network and control systems.

 This year's robot also contains a number of significant innovations. One notable feature

is the student designed single-voltage power bus, which includes modular sensor nodes that

regulate power as needed by the node. Sensor communication architecture is now

standardized, utilizing an Ethernet bus for sensor communication. Fault tolerance and

detection has also been designed to ensure more reliable sensor communications. These are

only a few notable improvements representative of numerous others.

Platform Design Process

 The design process for 2010 was much more involved and directed than in previous

years. To ensure an efficient development cycle, scientific methods were used to define the

characteristics of the robot and these equations created parameters that were used to acquire

and operate the physical components of the robotic platform. Prodigious amounts of time

were spent analyzing previous failures and developing new and innovative solutions.

 The IGVC team is split into three logical sections: Platform, Sensing, and AI respectively

held responsible for each of the different aspects of the robot's design. Table 1, below, outlines

the team members which contributed to the 2010 entry, which aspects of development they

were most involved in, and how many hours each spent on the project.

Name: Team/Role: Hours Spent:

Rich Mattes Team Leader/Sensing Lead/AI 100

Anthony Cascone Platform Lead/AI 100

Robin Pritz Platform 40

Tony Jones Platform 40

Xibei Ding Platform/Sensing 80

Miles Frain Platform 40

Jeremy Bridon AI 40

Shawn Moffit Sensing/Documentation 20

Design Parameters

 The 2009 IGVC entry was a Segway RMP400, borrowed from Penn State's Networked

Robotics and Systems Laboratory. The decision to borrow this robot was based on time

constraints. With a whole software stack to write, it was not feasible to, given the team’s

experience and manpower to compete that year and create a new robot frame from scratch.

 Building on some criticisms of the 2009 entry (far too large, unable to be commercialized in its

current state,) and leveraging two years of experience of best practices for the IGVC

competition, the initial process began with laying out a set of quantitative performance goals

and requirements which are listed below.

 150lb maximum weight

 8-10mph overall top speed

 Two motors on drive wheels, trailing caster

 Climb 40 degree inclines

Table 1: Team time chart.

 3+ hour battery runtime

 Small size, as close to 3' x 2' as possible

 Support sustained sensor draw of 20W

 Zero radius turn ability

 12" diameter wheels

 1m stopping distance

 Hot-swappable batteries

 From these requirements, design parameters were identified which would meet the

desired performance characteristics as indicated in the list below:

 Motor Size (Torque, Power, Angular Velocity)

 Minimum Battery Capacity (Ah)

 Battery Chemistry (Lead Acid, Lithium-Polymer, etc)

 Ground Clearance

 CG Location

 Track width (distance between drive wheels)

 Wheelbase/Caster location

 Tire type/material

 This list of design parameters was utilized to generate mathematical relationships

between the performance goals and parameters. The performance requirement of "3 hours of

battery run time" is dependent on battery chemistry, type of battery, and average power draw

(of sensors and motors), all interdependent relationships. Maintaining a low center of gravity,

for example, requires locating the weight as low to the ground as possible. Choosing four lead-

acid batteries for the "3 hours of battery run time" influences frame design, in addition to the

wheel and motor constraints needing to be close to the ground, this conflicts with the

dimension related goal of a 3’x2’ frame size requirement. Choosing four heavy lead acid

batteries pushes the 150lb maximum weight performance goal. These dependencies require

careful planning and design.

Motor selection

 With the above interdependence problems in mind, motor selection was the team’s

initial focus. Torque and power parameters, run time, incline climbing goals, and maximum

angular velocity for top speed goal achievement is calculated as follows.

 For straight-line travel power requirements, the power requirements are

This formula derives from the instantaneous power formula, where P = F x v. This is a force

balance under constant velocity, which means the force the motors must exert has to be the

same as the force pulling the robot back due to rolling friction (Crr * Fn). Each motor only needs

to provide half of this force, hence the division by two. The Crr for grass was determined to be

approximately 0.055 to 0.065.

 For maximum incline angle, building on the above force balance, in addition to the force

of weight of the robot opposing motion up an incline, the following formula gives how much

power needed to climb up an incline.

 Torque requirements for the motor in both situations can be derived from the T=r x F

formula, where r is the outer radius of the tires we've chosen, and F is the force the motors

each need to overcome to move the robot. From a dead stop, the force is the static rolling

resistance, and in the incline case, the force is the rolling resistance plus the weight of the robot

opposing motion due to gravity.

 Finally, the biggest constraint on vehicle top speed is the motor's maximum RPM.

Finding the speed of the robot is fairly trivial using the motor RPM and tire diameter. For a 12“

tire diameter, a maximum RPM of at least 140 was needed for 5mph travel. This value gives

the final requirement for the motor. A list of motors consisting of their rated torque, power,

and maximum RPM based on the manufacturer spec sheets was created in order to find which

motors were able to satisfy all of the requirements and to compare costs. Given budget

constraints and availability of the NPC T74 motors from inventory – the decision was clear.

These motors are much more powerful than required, so the budget constraint forced us to

design around this core component.

Battery selection

 In order to meet runtime requirements, the selected batteries must be able to provide

enough power to drive the motors and sensors for the amount of time specified. Sensor

datasheets provided power draw, which was modeled as a constant during robot operation. A

power profile was generated for the motors using the above power requirements. It was

estimated that the robot would spend 50% of its time in straight line travel, 50% of its time

climbing inclines at an average of 10 degrees, and 10% of its time sitting idle while being

programmed, troubleshot, and for debugging problems. With this power profile, the average

estimated power draw can be applied to battery capacity as indicated by the following formula:

which is used to determine the runtime as a function of current draw and energy available from

the batteries. Rearranging the formula, to solve for battery capacity in amp-hours (C) as a

function of runtime (t)., the average current, (I), is determined by using P = IV on the power

profile’s power draw, at a voltage of 24V.

Using the above power profile percentages, an average power draw of 227.38 watts was

calculated. Conclusion: in order to run for 3 hours, the robot has to have a battery pack

capacity of 42 amp-hours.

Power Distribution System Design

 The power distribution system should be simple, modular, and robust. Batteries should

be hot swappable to minimize

downtime, and one power source

should supply the components.

Last year's robot had separate

power supplies for the drive

systems and the sensors, which

created requirements for two

different kinds of chargers. The

robot should also be able to charge

Figure 3: Distribution hub, on-board charger, motor controller, and motor
with encoder

Figure 2: Power Distribution Layout

without having to disconnect power to the sensors.

 Given the run time requirements listed above, budget and inventory, it was decided that

a full 24V DC power system using two packs of two 12V lead acid batteries would be created.

Each battery pack is outfitted with a high-current quick-disconnect connector, and both packs

are connected in parallel to a distribution hub. This layout allows each battery pack to be

removed and replaced individually, while the other battery pack remains connected to power

the robot. The central distribution hub allows all major components to tap into the raw 24V DC

power bus at a single central point. An on-board 24V DC charger provides current to this

central distribution hub, allowing the vehicle to charge without turning off any subsystems.

 Each battery is rated at 18 amp-hours, which means that four batteries have a combined

capacity of 36 amp-hours in their current configuration. Based on power draw calculations, the

pack should last 2.5 hours before it needs to be charged.

Low-level Control

 Past years have shown

that relying solely on laptops

for control of the robot is a

bad design paradigm, as

laptops take significant time

to boot up and configure.

This means that the robot

often not ready to move, and

sometimes will take up to 5

minutes to enter that state.

In the past the work for this

was R/C car equipment that

operated independently of the software controls, however this approach often required

Figure 4: Testing the Central Distribution Box

manual intervention to switch between operating states. Given the goals of fast cold-start

time, and minimal manual intervention, an embedded ARM based computer, the BeagleBoard

was chosen. This board runs a full-fledged Linux-based operating system, which enables the

software team to compile and run software on it with minimal effort. The BeagleBoard also

features a fast boot-up time. The BeagleBoard was used to control the Motor Controller

directly, which means that the Motor Controller is available on the network as soon as the

BeagleBoard has completed its boot-up sequence. This significantly reduces time constraints

that made previous platforms non-competitive and was a significant innovation.

 Another innovation for this year is finely tuned sensor power control. Since a dedicated

computer comes online at power-up, this could be used to control the entire robot platform

startup procedure. The BeagleBoard is tied to a relay board, which can individually switch

power off and on to each sensor node. This allows the BeagleBoard to power on and off all of

the sensors on the robot through software. This functionality saves power, automates robot

startup, and is also used to quickly recover from communication faults.

Emergency Stop Architecture

 Emergency stop is a crucial part of the robot architecture. This functionality has three

modes of actuation. First and foremost, a large pushbutton mounted on the chassis of the

robot instantly turns off the motor controller, removing all power from the motors. The second

line of defense is remotely-controlled relay, satisfying the remote-stop requirement of the

rules. Finally, a software controlled relay is present, to allow the motor controller to be

disabled by the controlling algorithm for safety (for instance, when the vehicle is charging.) The

motor controller's stopped state is also monitored externally by the BeagleBoard, to assist in

fault tolerance. If the BeagleBoard loses communication with the motor controller, but finds

that the motor controller has been disabled externally (by a remote or physical stop switch,)

the BeagleBoard will not attempt to re-establish communication until the motor controller is

able to power on again.

Sensing Design process

Design Parameters

 The team had much of its sensing equipment available from the past two years of

competition. While software was utilized to communicate with the sensors, bringing sensors

online and offline often took several configuration steps. Further, it seemed that each sensor

had a specific connector to support, be it RS/232 DB-9, 3.3v or 5v TTL serial, or Ethernet. Each

sensor also had its own power requirements, which meant facilities were needed to regulate

and distribute power at 3.3V, 5V, 12V, and 24V DC. It was also difficult to track down

communication faults, as the team rarely knew if it a bug was power issue, loose solder joint in

a DB9 connector, or an outright sensor failure.

Software Architecture

 Building on these deficiencies, a modular sensor node architecture was decided upon. It

was mandated that, wherever possible, each sensor node must communicate over Ethernet,

and that all sensor nodes shall accept a 24V DC power source, and regulate down to the

sensor's required voltage as necessary. This 24V DC and Ethernet interface will be contained in

a 10 pin locking aerospace connector, such that the same style of cable may be used to plug in

to any sensor installed

onboard. This

architecture allows

any computer on the

network to initiate and

host communications

to a sensor, providing

us with the ability to

perform load-

balancing between Figure 5: Sensor node with example Ethernet/Power cable

each of the computers at will. It also allows the team to centrally regulate and distribute only

one voltage, simplifying routing of power and signal wires to all of the different sensors.

 Each sensor has an accompanying driver to manage connection and communication. To

date, drivers would fail outright and crash if communication to any particular sensor was

unavailable or interrupted. This wreaked havoc with software algorithms, which had no way of

knowing when a sensor dropout took place. More often than not, once one of the sensor

threads stopped working, it would cause a chain reaction that would crash the rest of the

system. To alleviate this, fault tolerance was added to all of the software drivers. A driver

model was established which dictated that drivers must periodically check to verify the

connection to the sensor is active. If the connection is found to be inactive, the driver will go

into a fault mode, where it will continuously check and try to re-establish a connection with the

sensor. While in fault mode, the driver will publish a flag to all of its subscribers, notifying them

that this sensor is down and readings from the sensor are not to be trusted. Drivers will also

continue to broadcast the last known good information. Once connection to the sensor is re-

established, the driver will clear the fault flag and begin publishing current information.

 All of the sensor Ethernet/power cables are plugged in to the central distribution box.

This box provides a regulated 24V DC source from the batteries, which can be activated and

deactivated by a relay. The relays are controlled by an Arduino microcontroller, which

responds to commands from a BeagleBoard over USB. Since the power to each sensor can be

Part Maunfacturer/Model#

IMU Sparkfun 6DOFv4

LIDAR SICK LMS291

GPS Hemisphere A100 Smart Antenna

Camera Point Grey Dragonfly

Compass OceanServer OS5000

Motor NPC T74

Motor Controller Roboteq AX2850

Wheel Encoders USDigital E6

Table 2: Discrete component list

modulated in software as mentioned in the Low-Level Control section, a driver that detects a

fault in sensor communication has the option to power-cycle the sensor while attempting to re-

establish communication.

Software and Controls design process

 The software and control framework once again uses the open-source Player

framework, running on top of the Fedora and Angstrom Linux distributions. The open nature of

these development tools and frameworks allows for great customization and control during the

development process. It also allows the team to track down and fix bugs within the software

frameworks quickly, and communicate with the upstream developers for fast resolution of

problems that are outside team expertise. In the spirit of free and open software, this year's

IGVC team played a large role in packaging and submitting the Player robot server, the Stage

robot simulator, and the Gearbox serial/Ethernet communication library for inclusion in

Fedora's package database. Now, all users of Fedora can install any of these software packages

with a few mouse clicks, no complex compilation steps necessary.

Design Parameters

 For this year's IGVC robot, the team wanted to build on the failings of last year's

software design to create a system that's more tolerant to intermittent faults, and more user-

friendly. To that end, a separate interface was created in each device driver that notifies any

subscribing algorithms of a fault.

Map Generator

 Map generation code collects the robot's current pose and all laser scans made by the

robot. It updates an occupancy grid (represented with an image file) with laser range

measurements, drawing obstacles where laser collisions are detected. When updating an area

that already exists within the map, obstacles that already exist in the map are made to fade

away slowly. This accounts for drift errors, where the current position estimate is different

from the position estimate when the map was first updated. The end result is that, if nothing is

detected where an obstacle previously was, the recorded obstacle will eventually disappear.

However, if new scans do agree with a previously found obstacle, the obstacle is treated

normally.

Path Planner

 Planning a path over mostly unknown terrain is not a very easy task. The path planner

needed to work well with partially unknown environments, and it had to be fast to re-plan if the

known obstacles suddenly change. For these reasons, the D* planning algorithm was chosen.

Periodically, the path planner will request an area of map from the Map Generator, based on

the robot's current position and goal pose. Once the Map Generator satisfies this request, a

new array of goal points is calculated and made available to any clients that request them.

 The Path Planner will try to come as close to any obstacles as possible thus shortening

the distance to travel; however, this sometimes creates issues as it tries to plan through the

pixels immediately surrounding known obstacles from the Map Generator. In order to avoid

this, obstacles are dilated by the width of the robot, thereby adding a buffer, when they are

transferred from the Map Generator to the Path Planner.

Figure 6: Simulated environment Figure 7: Map Generator output from simulated environment

Image Processing

 Image processing is traditionally a

very difficult problem. The solution

chosen, however, is quite simple. A color

image is acquired from the camera, and

each channel is instantly down sampled

to 1 bit per pixel. The resulting image

allows for only 8 pixel states. The image

is then converted to grayscale, making an

intensity image where the highlights

consist of bright objects from the original

image. At this stage, the desired

obstacles stand out, but there is also a lot

of small random noise. A median filter is run across the image, with a sampling area of 5x5

pixels, to eliminate outliers throughout the image, and then the image is thresholded so all

pixels below white are turned black. All that remains at this point is a binary image with line

markers in white, and background in black. The image is subjected to a perspective

transformation, which converts the image such that it looks like a bird's eye view of the area in

front of the robot. Lines are traced from the bottom center of the image, radially to the edges

of the image, creating a virtual laser scan of the image. This laser scan is then treated by the

algorithms as any other laser scan would, with laser hits representing real obstacles.

Localization

 Localization of the robot takes place with several different sensors. Inputs from a 6

degree of freedom accelerometer and gyro, WAAS-enabled GPS receiver, magnetic compass,

and wheel encoders mounted in the motors are fed into a Kalman Filter to keep an accurate

estimate of the robot's position. The localization routine is fault tolerant: when a sensor raises

a fault flag, the Kalman Filter will assign zero confidence to the incoming measurements,

effectively blocking them out. The state will continue to update with the rest of the available

Figure 6: Image processing algorithm sequence

measurements, and when a faulty sensor comes back online, its measurements will start to be

considered again.

Operational States

Navigation Challenge

 The Navigation Challenge relies heavily on most of the algorithms. The provided set of

waypoint GPS coordinates is loaded from a text file by the controller algorithm, and converted

to the robot's internal coordinate system. The Map Generator starts and begins recording the

map, and the Path Planner starts and awaits a command. Once the controller algorithm is

ready, it will send the point of the first waypoint to the Path Planner. The Path Planner will

request the necessary map tiles from the Map Generator, plan its path, and publish that data

back to the main controller algorithm. The controller algorithm will then compare the points

along the path with the vehicle’s current estimated position (from the Localization algorithm

described above), and using a proportional controller, attempt to navigate to the intermediate

points in sequence until the final goal point is reached. Along the way, new waypoints are

periodically requested, and if the planner decides to alter its route due to new obstacles, the

controller algorithm will adjust accordingly.

Autonomous Challenge

 The strategy for the Autonomous challenge is to take a reactive approach, which means

that accurate sensor data is of great importance. The robot is set to try to maintain a nominal

straight-forward velocity, until an obstacle is detected. Obstacle detection takes place using

two lasers: the front-mounted SICK scanning laser rangefinder and the virtual laser provided by

the Image Processing algorithm developed. The physical laser handles detections of barrels,

trash cans, and fences, while the virtual laser detects white lines and represents them as

obstacles. As the robot encounters obstacles on either side, it alters its path in an effort to

avoid collisions.

